Normal view

There are new articles available, click to refresh the page.
Before yesterdayMain stream

Mastering Docker and Jenkins: Build Robust CI/CD Pipelines Efficiently

16 January 2025 at 20:17

Hey there, fellow engineers and tech enthusiasts! I’m excited to share one of my favorite strategies for modern software delivery: combining Docker and Jenkins to power up your CI/CD pipelines. 

Throughout my career as a Senior DevOps Engineer and Docker Captain, I’ve found that these two tools can drastically streamline releases, reduce environment-related headaches, and give teams the confidence they need to ship faster.

In this post, I’ll walk you through what Docker and Jenkins are, why they pair perfectly, and how you can build and maintain efficient pipelines. My goal is to help you feel right at home when automating your workflows. Let’s dive in.

2400x1260 evergreen docker blog g

Brief overview of continuous integration and continuous delivery

Continuous integration (CI) and continuous delivery (CD) are key pillars of modern development. If you’re new to these concepts, here’s a quick rundown:

  • Continuous integration (CI): Developers frequently commit their code to a shared repository, triggering automated builds and tests. This practice prevents conflicts and ensures defects are caught early.
  • Continuous delivery (CD): With CI in place, organizations can then confidently automate releases. That means shorter release cycles, fewer surprises, and the ability to roll back changes quickly if needed.

Leveraging CI/CD can dramatically improve your team’s velocity and quality. Once you experience the benefits of dependable, streamlined pipelines, there’s no going back.

Why combine Docker and Jenkins for CI/CD?

Docker allows you to containerize your applications, creating consistent environments across development, testing, and production. Jenkins, on the other hand, helps you automate tasks such as building, testing, and deploying your code. I like to think of Jenkins as the tireless “assembly line worker,” while Docker provides identical “containers” to ensure consistency throughout your project’s life cycle.

Here’s why blending these tools is so powerful:

  • Consistent environments: Docker containers guarantee uniformity from a developer’s laptop all the way to production. This consistency reduces errors and eliminates the dreaded “works on my machine” excuse.
  • Speedy deployments and rollbacks: Docker images are lightweight. You can ship or revert changes at the drop of a hat — perfect for short delivery process cycles where minimal downtime is crucial.
  • Scalability: Need to run 1,000 tests in parallel or support multiple teams working on microservices? No problem. Spin up multiple Docker containers whenever you need more build agents, and let Jenkins orchestrate everything with Jenkins pipelines.

For a DevOps junkie like me, this synergy between Jenkins and Docker is a dream come true.

Setting up your CI/CD pipeline with Docker and Jenkins

Before you roll up your sleeves, let’s cover the essentials you’ll need:

  • Docker Desktop (or a Docker server environment) installed and running. You can get Docker for various operating systems.
  • Jenkins downloaded from Docker Hub or installed on your machine. These days, you’ll want jenkins/jenkins:lts (the long-term support image) rather than the deprecated library/jenkins image.
  • Proper permissions for Docker commands and the ability to manage Docker images on your system.
  • A GitHub or similar code repository where you can store your Jenkins pipeline configuration (optional, but recommended).

Pro tip: If you’re planning a production setup, consider a container orchestration platform like Kubernetes. This approach simplifies scaling Jenkins, updating Jenkins, and managing additional Docker servers for heavier workloads.

Building a robust CI/CD pipeline with Docker and Jenkins

After prepping your environment, it’s time to create your first Jenkins-Docker pipeline. Below, I’ll walk you through common steps for a typical pipeline — feel free to modify them to fit your stack.

1. Install necessary Jenkins plugins

Jenkins offers countless plugins, so let’s start with a few that make configuring Jenkins with Docker easier:

  • Docker Pipeline Plugin
  • Docker
  • CloudBees Docker Build and Publish

How to install plugins:

  1. Open Manage Jenkins > Manage Plugins in Jenkins.
  2. Click the Available tab and search for the plugins listed above.
  3. Install them (and restart Jenkins if needed).

Code example (plugin installation via CLI):

# Install plugins using Jenkins CLI
java -jar jenkins-cli.jar -s http://<jenkins-server>:8080/ install-plugin docker-pipeline
java -jar jenkins-cli.jar -s http://<jenkins-server>:8080/ install-plugin docker
java -jar jenkins-cli.jar -s http://<jenkins-server>:8080/ install-plugin docker-build-publish

Pro tip (advanced approach): If you’re aiming for a fully infrastructure-as-code setup, consider using Jenkins configuration as code (JCasC). With JCasC, you can declare all your Jenkins settings — including plugins, credentials, and pipeline definitions — in a YAML file. This means your entire Jenkins configuration is version-controlled and reproducible, making it effortless to spin up fresh Jenkins instances or apply consistent settings across multiple environments. It’s especially handy for large teams looking to manage Jenkins at scale.

Reference:

2. Set up your Jenkins pipeline

In this step, you’ll define your pipeline. A Jenkins “pipeline” job uses a Jenkinsfile (stored in your code repository) to specify the steps, stages, and environment requirements.

Example Jenkinsfile:

pipeline {
    agent any
    stages {
        stage('Checkout') {
            steps {
                git branch: 'main', url: 'https://github.com/your-org/your-repo.git'
            }
        }
        stage('Build') {
            steps {
                script {
                    dockerImage = docker.build("your-org/your-app:${env.BUILD_NUMBER}")
                }
            }
        }
        stage('Test') {
            steps {
                sh 'docker run --rm your-org/your-app:${env.BUILD_NUMBER} ./run-tests.sh'
            }
        }
        stage('Push') {
            steps {
                script {
                    docker.withRegistry('https://index.docker.io/v1/', 'dockerhub-credentials') {
                        dockerImage.push()
                    }
                }
            }
        }
    }
}

Let’s look at what’s happening here:

  1. Checkout: Pulls your repository.
  2. Build: Creates a built docker image (your-org/your-app) with the build number as a tag.
  3. Test: Runs your test suite inside a fresh container, ensuring Docker containers create consistent environments for every test run.
  4. Push: Pushes the image to your Docker registry (e.g., Docker Hub) if the tests pass.

Reference: Jenkins Pipeline Documentation.

3. Configure Jenkins for automated builds

Now that your pipeline is set up, you’ll want Jenkins to run it automatically:

  • Webhook triggers: Configure your source control (e.g., GitHub) to send a webhook whenever code is pushed. Jenkins will kick off a build immediately.
  • Poll SCM: Jenkins periodically checks your repo for new commits and starts a build if it detects changes.

Which trigger method should you choose?

  • Webhook triggers are ideal if you want near real-time builds. As soon as you push to your repo, Jenkins is notified, and a new build starts almost instantly. This approach is typically more efficient, as Jenkins doesn’t have to continuously check your repository for updates. However, it requires that your source control system and network environment support webhooks.
  • Poll SCM is useful if your environment can’t support incoming webhooks — for example, if you’re behind a corporate firewall or your repository isn’t configured for outbound hooks. In that case, Jenkins routinely checks for new commits on a schedule you define (e.g., every five minutes), which can add a small delay and extra overhead but may simplify setup in locked-down environments.

Personal experience: I love webhook triggers because they keep everything as close to real-time as possible. Polling works fine if webhooks aren’t feasible, but you’ll see a slight delay between code pushes and build starts. It can also generate extra network traffic if your polling interval is too frequent.

4. Build, test, and deploy with Docker containers

Here comes the fun part — automating the entire cycle from build to deploy:

  1. Build Docker image: After pulling the code, Jenkins calls docker.build to create a new image.
  2. Run tests: Automated or automated acceptance testing runs inside a container spun up from that image, ensuring consistency.
  3. Push to registry: Assuming tests pass, Jenkins pushes the tagged image to your Docker registry — this could be Docker Hub or a private registry.
  4. Deploy: Optionally, Jenkins can then deploy the image to a remote server or a container orchestrator (Kubernetes, etc.).

This streamlined approach ensures every step — build, test, deploy — lives in one cohesive pipeline, preventing those “where’d that step go?” mysteries.

5. Optimize and maintain your pipeline

Once your pipeline is up and running, here are a few maintenance tips and enhancements to keep everything running smoothly:

  • Clean up images: Routine cleanup of Docker images can reclaim space and reduce clutter.
  • Security updates: Stay on top of updates for Docker, Jenkins, and any plugins. Applying patches promptly helps protect your CI/CD environment from vulnerabilities.
  • Resource monitoring: Ensure Jenkins nodes have enough memory, CPU, and disk space for builds. Overworked nodes can slow down your pipeline and cause intermittent failures.

Pro tip: In large projects, consider separating your build agents from your Jenkins controller by running them in ephemeral Docker containers (also known as Jenkins agents). If an agent goes down or becomes stale, you can quickly spin up a fresh one — ensuring a clean, consistent environment for every build and reducing the load on your main Jenkins server.

Why use Declarative Pipelines for CI/CD?

Although Jenkins supports multiple pipeline syntaxes, Declarative Pipelines stand out for their clarity and resource-friendly design. Here’s why:

  • Simplified, opinionated syntax: Everything is wrapped in a single pipeline { ... } block, which minimizes “scripting sprawl.” It’s perfect for teams who want a quick path to best practices without diving deeply into Groovy specifics.
  • Easier resource allocation: By specifying an agent at either the pipeline level or within each stage, you can offload heavyweight tasks (builds, tests) onto separate worker nodes or Docker containers. This approach helps prevent your main Jenkins controller from becoming overloaded.
  • Parallelization and matrix builds: If you need to run multiple test suites or support various OS/browser combinations, Declarative Pipelines make it straightforward to define parallel stages or set up a matrix build. This tactic is incredibly handy for microservices or large test suites requiring different environments in parallel.
  • Built-in “escape hatch”: Need advanced Groovy features? Just drop into a script block. This lets you access Scripted Pipeline capabilities for niche cases, while still enjoying Declarative’s streamlined structure most of the time.
  • Cleaner parameterization: Want to let users pick which tests to run or which Docker image to use? The parameters directive makes your pipeline more flexible. A single Jenkinsfile can handle multiple scenarios — like unit vs. integration testing — without duplicating stages.

Declarative Pipeline examples

Below are sample pipelines to illustrate how declarative syntax can simplify resource allocation and keep your Jenkins controller healthy.

Example 1: Basic Declarative Pipeline

pipeline {
    agent any
    stages {
        stage('Build') {
            steps {
                echo 'Building...'
            }
        }
        stage('Test') {
            steps {
                echo 'Testing...'
            }
        }
    }
}
  • Runs on any available Jenkins agent (worker).
  • Uses two stages in a simple sequence.

Example 2: Stage-level agents for resource isolation

pipeline {
    agent none  // Avoid using a global agent at the pipeline level
    stages {
        stage('Build') {
            agent { docker 'maven:3.9.3-eclipse-temurin-17' }
            steps {
                sh 'mvn clean package'
            }
        }
        stage('Test') {
            agent { docker 'openjdk:17-jdk' }
            steps {
                sh 'java -jar target/my-app-tests.jar'
            }
        }
    }
}
  • Each stage runs in its own container, preventing any single node from being overwhelmed.
  • agent none at the top ensures no global agent is allocated unnecessarily.

Example 3: Parallelizing test stages

pipeline {
    agent none
    stages {
        stage('Test') {
            parallel {
                stage('Unit Tests') {
                    agent { label 'linux-node' }
                    steps {
                        sh './run-unit-tests.sh'
                    }
                }
                stage('Integration Tests') {
                    agent { label 'linux-node' }
                    steps {
                        sh './run-integration-tests.sh'
                    }
                }
            }
        }
    }
}
  • Splits tests into two parallel stages.
  • Each stage can run on a different node or container, speeding up feedback loops.

Example 4: Parameterized pipeline

pipeline {
    agent any

    parameters {
        choice(name: 'TEST_TYPE', choices: ['unit', 'integration', 'all'], description: 'Which test suite to run?')
    }

    stages {
        stage('Build') {
            steps {
                echo 'Building...'
            }
        }
        stage('Test') {
            when {
                expression { return params.TEST_TYPE == 'unit' || params.TEST_TYPE == 'all' }
            }
            steps {
                echo 'Running unit tests...'
            }
        }
        stage('Integration') {
            when {
                expression { return params.TEST_TYPE == 'integration' || params.TEST_TYPE == 'all' }
            }
            steps {
                echo 'Running integration tests...'
            }
        }
    }
}
  • Lets you choose which tests to run (unit, integration, or both).
  • Only executes relevant stages based on the chosen parameter, saving resources.

Example 5: Matrix builds

pipeline {
    agent none

    stages {
        stage('Build and Test Matrix') {
            matrix {
                agent {
                    label "${PLATFORM}-docker"
                }
                axes {
                    axis {
                        name 'PLATFORM'
                        values 'linux', 'windows'
                    }
                    axis {
                        name 'BROWSER'
                        values 'chrome', 'firefox'
                    }
                }
                stages {
                    stage('Build') {
                        steps {
                            echo "Build on ${PLATFORM} with ${BROWSER}"
                        }
                    }
                    stage('Test') {
                        steps {
                            echo "Test on ${PLATFORM} with ${BROWSER}"
                        }
                    }
                }
            }
        }
    }
}
  • Defines a matrix of PLATFORM x BROWSER, running each combination in parallel.
  • Perfect for testing multiple OS/browser combinations without duplicating pipeline logic.

Additional resources:

Using Declarative Pipelines helps ensure your CI/CD setup is easier to maintain, scalable, and secure. By properly configuring agents — whether Docker-based or label-based — you can spread workloads across multiple worker nodes, minimize resource contention, and keep your Jenkins controller humming along happily.

Best practices for CI/CD with Docker and Jenkins

Ready to supercharge your setup? Here are a few tried-and-true habits I’ve cultivated:

  • Leverage Docker’s layer caching: Optimize your Dockerfiles so stable (less frequently changing) layers appear early. This drastically reduces build times.
  • Run tests in parallel: Jenkins can run multiple containers for different services or microservices, letting you test them side by side. Declarative Pipelines make it easy to define parallel stages, each on its own agent.
  • Shift left on security: Integrate security checks early in the pipeline. Tools like Docker Scout let you scan images for vulnerabilities, while Jenkins plugins can enforce compliance policies. Don’t wait until production to discover issues.
  • Optimize resource allocation: Properly configure CPU and memory limits for Jenkins and Docker containers to avoid resource hogging. If you’re scaling Jenkins, distribute builds across multiple worker nodes or ephemeral agents for maximum efficiency.
  • Configuration management: Store Jenkins jobs, pipeline definitions, and plugin configurations in source control. Tools like Jenkins Configuration as Code simplify versioning and replicating your setup across multiple Docker servers.

With these strategies — plus a healthy dose of Declarative Pipelines — you’ll have a lean, high-octane CI/CD pipeline that’s easier to maintain and evolve.

Troubleshooting Docker and Jenkins Pipelines

Even the best systems hit a snag now and then. Here are a few hurdles I’ve seen (and conquered):

  • Handling environment variability: Keep Docker and Jenkins versions synced across different nodes. If multiple Jenkins nodes are in play, standardize Docker versions to avoid random build failures.
  • Troubleshooting build failures: Use docker logs -f <container-id> to see exactly what happened inside a container. Often, the logs reveal missing dependencies or misconfigured environment variables.
  • Networking challenges: If your containers need to talk to each other — especially across multiple hosts — make sure you configure Docker networks or an orchestration platform properly. Read Docker’s networking documentation for details, and check out the Jenkins diagnosing issues guide for more troubleshooting tips.

Conclusion

Pairing Docker and Jenkins offers a nimble, robust approach to CI/CD. Docker locks down consistent environments and lightning-fast rollouts, while Jenkins automates key tasks like building, testing, and pushing your changes to production. When these two are in harmony, you can expect shorter release cycles, fewer integration headaches, and more time to focus on developing awesome features.

A healthy pipeline also means your team can respond quickly to user feedback and confidently roll out updates — two crucial ingredients for any successful software project. And if you’re concerned about security, there are plenty of tools and best practices to keep your applications safe.

I hope this guide helps you build (and maintain) a high-octane CI/CD pipeline that your team will love. If you have questions or need a hand, feel free to reach out on the community forums, join the conversation on Slack, or open a ticket on GitHub issues. You’ll find plenty of fellow Docker and Jenkins enthusiasts who are happy to help.

Thanks for reading, and happy building!

Learn more

How to Dockerize a React App: A Step-by-Step Guide for Developers

10 December 2024 at 19:58

If you’re anything like me, you love crafting sleek and responsive user interfaces with React. But, setting up consistent development environments and ensuring smooth deployments can also get complicated. That’s where Docker can help save the day.

As a Senior DevOps Engineer and Docker Captain, I’ve navigated the seas of containerization and witnessed firsthand how Docker can revolutionize your workflow. In this guide, I’ll share how you can dockerize a React app to streamline your development process, eliminate those pesky “it works on my machine” problems, and impress your colleagues with seamless deployments.

Let’s dive into the world of Docker and React!

2400x1260 docker evergreen logo blog D 1

Why containerize your React application?

You might be wondering, “Why should I bother containerizing my React app?” Great question! Containerization offers several compelling benefits that can elevate your development and deployment game, such as:

  • Streamlined CI/CD pipelines: By packaging your React app into a Docker container, you create a consistent environment from development to production. This consistency simplifies continuous integration and continuous deployment (CI/CD) pipelines, reducing the risk of environment-specific issues during builds and deployments.
  • Simplified dependency management: Docker encapsulates all your app’s dependencies within the container. This means you won’t have to deal with the infamous “works on my machine” dilemma anymore. Every team member and deployment environment uses the same setup, ensuring smooth collaboration.
  • Better resource management: Containers are lightweight and efficient. Unlike virtual machines, Docker containers share the host system’s kernel, which means you can run more containers on the same hardware. This efficiency is crucial when scaling applications or managing resources in a production environment.
  • Isolated environment without conflict: Docker provides isolated environments for your applications. This isolation prevents conflicts between different projects’ dependencies or configurations on the same machine. You can run multiple applications, each with its own set of dependencies, without them stepping on each other’s toes.

Getting started with React and Docker

Before we go further, let’s make sure you have everything you need to start containerizing your React app.

Tools you’ll need

A quick introduction to Docker

Docker offers a comprehensive suite of enterprise-ready tools, cloud services, trusted content, and a collaborative community that helps streamline workflows and maximize development efficiency. The Docker productivity platform allows developers to package applications into containers — standardized units that include everything the software needs to run. Containers ensure that your application runs the same, regardless of where it’s deployed.

How to dockerize your React project

Now let’s get down to business. We’ll go through the process step by step and, by the end, you’ll have your React app running inside a Docker container.

Step 1: Set up the React app

If you already have a React app, you can skip this step. If not, let’s create one:

npx create-react-app my-react-app
cd my-react-app

This command initializes a new React application in a directory called my-react-app.

Step 2: Create a Dockerfile

In the root directory of your project, create a file named Dockerfile (no extension). This file will contain instructions for building your Docker image.

Dockerfile for development

For development purposes, you can create a simple Dockerfile:

# Use the latest LTS version of Node.js
FROM node:18-alpine

# Set the working directory inside the container
WORKDIR /app

# Copy package.json and package-lock.json
COPY package*.json ./

# Install dependencies
RUN npm install

# Copy the rest of your application files
COPY . .

# Expose the port your app runs on
EXPOSE 3000

# Define the command to run your app
CMD ["npm", "start"]

What’s happening here?

  • FROM node:18-alpine: We’re using the latest LTS version of Node.js based on Alpine Linux.
  • WORKDIR /app: Sets the working directory inside the container.
  • *COPY package.json ./**: Copies package.json and package-lock.json to the working directory.
  • RUN npm install: Installs the dependencies specified in package.json.
  • COPY . .: Copies all the files from your local directory into the container.
  • EXPOSE 3000: Exposes port 3000 on the container (React’s default port).
  • CMD ["npm", "start"]: Tells Docker to run npm start when the container launches.

Production Dockerfile with multi-stage build

For a production-ready image, we’ll use a multi-stage build to optimize the image size and enhance security.

# Build Stage
FROM node:18-alpine AS build
WORKDIR /app
COPY package*.json ./
RUN npm install
COPY . .
RUN npm run build

# Production Stage
FROM nginx:stable-alpine AS production
COPY --from=build /app/build /usr/share/nginx/html
EXPOSE 80
CMD ["nginx", "-g", "daemon off;"]

Explanation

  • Build stage:
    • FROM node:18-alpine AS build: Uses Node.js 18 for building the app.
    • RUN npm run build: Builds the optimized production files.
  • Production stage:
    • FROM nginx: Uses Nginx to serve static files.
    • COPY --from=build /app/build /usr/share/nginx/html: Copies the build output from the previous stage.
    • EXPOSE 80: Exposes port 80.
    • CMD ["nginx", "-g", "daemon off;"]: Runs Nginx in the foreground.

Benefits

  • Smaller image size: The final image contains only the production build and Nginx.
  • Enhanced security: Excludes development dependencies and Node.js runtime from the production image.
  • Performance optimization: Nginx efficiently serves static files.

Step 3: Create a .dockerignore file

Just like .gitignore helps Git ignore certain files, .dockerignore tells Docker which files or directories to exclude when building the image. Create a .dockerignore file in your project’s root directory:

node_modules
npm-debug.log
Dockerfile
.dockerignore
.git
.gitignore
.env

Excluding unnecessary files reduces the image size and speeds up the build process.

Step 4: Build and run your dockerized React app

Navigate to your project’s root directory and run:

docker build -t my-react-app .

This command tags the image with the name my-react-app and specifies the build context (current directory). By default, this will build the final production stage from your multi-stage Dockerfile, resulting in a smaller, optimized image.

If you have multiple stages in your Dockerfile and need to target a specific build stage (such as the build stage), you can use the --target option. For example:

docker build -t my-react-app-dev --target build .

Note: Building with --target build creates a larger image because it includes the build tools and dependencies needed to compile your React app. The production image (built using –target production) on the other hand, is much smaller because it only contains the final build files.

Running the Docker container

For the development image:

docker run -p 3000:3000 my-react-app-dev

For the production image:

docker run -p 80:80 my-react-app

Accessing your application

Next, open your browser and go to:

  • http://localhost:3000 (for development)
  • http://localhost (for production)

You should see your React app running inside a Docker container.

Step 5: Use Docker Compose for multi-container setups

Here’s an example of how a React frontend app can be configured as a service using Docker Compose.

Create a compose.yml file:

services:
  web:
    build: .
    ports:
      - "3000:3000"
    volumes:
     - .:/app
     - ./node_modules:/app/node_modules
    environment:
      NODE_ENV: development
    stdin_open: true
    tty: true
    command: npm start

Explanation

  • services: Defines a list of services (containers).
  • web: The name of our service.
    • build: .: Builds the Dockerfile in the current directory.
    • ports: Maps port 3000 on the container to port 3000 on the host.
    • volumes: Mounts the current directory and node_modules for hot-reloading.
    • environment: Sets environment variables.
    • stdin_open and tty: Keep the container running and interactive.

Step 6: Publish your image to Docker Hub

Sharing your Docker image allows others to run your app without setting up the environment themselves.

Log in to Docker Hub:

docker login

Enter your Docker Hub username and password when prompted.

Tag your image:

docker tag my-react-app your-dockerhub-username/my-react-app

Replace your-dockerhub-username with your actual Docker Hub username.

Push the image:

docker push your-dockerhub-username/my-react-app

Your image is now available on Docker Hub for others to pull and run.

Pull and run the image:

docker pull your-dockerhub-username/my-react-app

docker run -p 80:80 your-dockerhub-username/my-react-app

Anyone can now run your app by pulling the image.

Handling environment variables securely

Managing environment variables securely is crucial to protect sensitive information like API keys and database credentials.

Using .env files

Create a .env file in your project root:

REACT_APP_API_URL=https://api.example.com

Update your compose.yml:

services:
  web:
    build: .
    ports:
      - "3000:3000"
    volumes:
     - .:/app
     - ./node_modules:/app/node_modules
    env_file:
      - .env
    stdin_open: true
    tty: true
    command: npm start

Security note: Ensure your .env file is added to .gitignore and .dockerignore to prevent it from being committed to version control or included in your Docker image.

To start all services defined in a compose.yml in detached mode, the command is:

docker compose up -d

Passing environment variables at runtime

Alternatively, you can pass variables when running the container:

docker run -p 3000:3000 -e REACT_APP_API_URL=https://api.example.com my-react-app-dev

Using Docker Secrets (advanced)

For sensitive data in a production environment, consider using Docker Secrets to manage confidential information securely.

Production Dockerfile with multi-stage builds

When preparing your React app for production, multi-stage builds keep things lean and focused. They let you separate the build process from the final runtime environment, so you only ship what you need to serve your app. This not only reduces image size but also helps prevent unnecessary packages or development dependencies from sneaking into production.

The following is an example that goes one step further: We’ll create a dedicated build stage, a development environment stage, and a production stage. This approach ensures you can develop comfortably while still ending up with a streamlined, production-ready image.

# Stage 1: Build the React app
FROM node:18-alpine AS build
WORKDIR /app

# Leverage caching by installing dependencies first
COPY package.json package-lock.json ./
RUN npm install --frozen-lockfile

# Copy the rest of the application code and build for production
COPY . ./
RUN npm run build

# Stage 2: Development environment
FROM node:18-alpine AS development
WORKDIR /app

# Install dependencies again for development
COPY package.json package-lock.json ./
RUN npm install --frozen-lockfile

# Copy the full source code
COPY . ./

# Expose port for the development server
EXPOSE 3000
CMD ["npm", "start"]

# Stage 3: Production environment
FROM nginx:alpine AS production

# Copy the production build artifacts from the build stage
COPY --from=build /app/build /usr/share/nginx/html

# Expose the default NGINX port
EXPOSE 80
CMD ["nginx", "-g", "daemon off;"]

What’s happening here?

  • build stage: The first stage uses the official Node.js image to install dependencies, run the build, and produce an optimized, production-ready React build. By copying only your package.json and package-lock.json before running npm install, you leverage Docker’s layer caching, which speeds up rebuilds when your code changes but your dependencies don’t.
  • development stage: Need a local environment with hot-reloading for rapid iteration? This second stage sets up exactly that. It installs dependencies again (using the same caching trick) and starts the development server on port 3000, giving you the familiar npm start experience inside Docker.
  • production stage: Finally, the production stage uses a lightweight NGINX image to serve your static build artifacts. This stripped-down image doesn’t include Node.js or unnecessary development tools — just your optimized app and a robust web server. It keeps things clean, secure, and efficient.

This structured approach makes it a breeze to switch between development and production environments. You get fast feedback loops while coding, plus a slim, optimized final image ready for deployment. It’s a best-of-both-worlds solution that will streamline your React development workflow.

Troubleshooting common issues with Docker and React

Even with the best instructions, issues can arise. Here are common problems and how to fix them.

Issue: “Port 3000 is already in use”

Solution: Either stop the service using port 3000 or map your app to a different port when running the container.

docker run -p 4000:3000 my-react-app

Access your app at http://localhost:4000.

Issue: Changes aren’t reflected during development

Solution: Use Docker volumes to enable hot-reloading. In your compose.yml, ensure you have the following under volumes:

volumes:
  - .:/app
  - ./node_modules:/app/node_modules

This setup allows your local changes to be mirrored inside the container.

Issue: Slow build times

Solution: Optimize your Dockerfile to leverage caching. Copy only package.json and package-lock.json before running npm install. This way, Docker caches the layer unless these files change.

COPY package*.json ./
RUN npm install
COPY . .

Issue: Container exits immediately

Cause: The React development server may not keep the container running by default.

Solution: Ensure you’re running the container interactively:

docker run -it -p 3000:3000 my-react-app

Issue: File permission errors

Solution: Adjust file permissions or specify a user in the Dockerfile using the USER directive.

# Add before CMD
USER node

Issue: Performance problems on macOS and Windows

File-sharing mechanisms between the host system and Docker containers introduce significant overhead on macOS and Windows, especially when working with large repositories or projects containing many files. Traditional methods like osxfs and gRPC FUSE often struggle to scale efficiently in these environments.

Solutions:

Enable synchronized file shares (Docker Desktop 4.27+): Docker Desktop 4.27+ introduces synchronized file shares, which significantly enhance bind mount performance by creating a high-performance, bidirectional cache of host files within the Docker Desktop VM.

Key benefits:

  • Optimized for large projects: Handles monorepos or repositories with thousands of files efficiently.
  • Performance improvement: Resolves bottlenecks seen with older file-sharing mechanisms.
  • Real-time synchronization: Automatically syncs filesystem changes between the host and container in near real-time.
  • Reduced file ownership conflicts: Minimizes issues with file permissions between host and container.

How to enable:

  • Open Docker Desktop and go to Settings > Resources > File Sharing.
  • In the Synchronized File Shares section, select the folder to share and click Initialize File Share.
  • Use bind mounts in your compose.yml or Docker CLI commands that point to the shared directory.

Optimize with .syncignore: Create a .syncignore file in the root of your shared directory to exclude unnecessary files (e.g., node_modules, .git/) for better performance.

Example .syncignore file:

node_modules
.git/
*.log

Example in compose.yml:

services:
  web:
    build: .
    volumes:
      - ./app:/app
    ports:
      - "3000:3000"
    environment:
      NODE_ENV: development

Leverage WSL 2 on Windows: For Windows users, Docker’s WSL 2 backend offers near-native Linux performance by running the Docker engine in a lightweight Linux VM.

How to enable WSL 2 backend:

  • Ensure Windows 10 version 2004 or higher is installed.
  • Install the Windows Subsystem for Linux 2.
  • In Docker Desktop, go to Settings > General and enable Use the WSL 2 based engine.

Use updated caching options in volume mounts: Although legacy options like :cached and :delegated are deprecated, consistency modes still allow optimization:

  • consistent: Strict consistency (default).
  • cached: Allows the host to cache contents.
  • delegated: Allows the container to cache contents.

Example volume configuration:

volumes:
  - type: bind
    source: ./app
    target: /app
    consistency: cached

Optimizing your React Docker setup

Let’s enhance our setup with some advanced techniques.

Reducing image size

Every megabyte counts, especially when deploying to cloud environments.

  • Use smaller base images: Alpine-based images are significantly smaller.
  • Clean up after installing dependencies:
RUN npm install && npm cache clean --force
  • Avoid copying unnecessary files: Use .dockerignore effectively.

Leveraging Docker build cache

Ensure that you’re not invalidating the cache unnecessarily. Only copy files that are required for each build step.

Using Docker layers wisely

Each command in your Dockerfile creates a new layer. Combine commands where appropriate to reduce the number of layers.

RUN npm install && npm cache clean --force

Conclusion

Dockerizing your React app is a game-changer. It brings consistency, efficiency, and scalability to your development workflow. By containerizing your application, you eliminate environment discrepancies, streamline deployments, and make collaboration a breeze.

So, the next time you’re setting up a React project, give Docker a shot. It will make your life as a developer significantly easier. Welcome to the world of containerization!

Learn more

Why Testcontainers Cloud Is a Game-Changer Compared to Docker-in-Docker for Testing Scenarios

14 November 2024 at 22:39

Navigating the complex world of containerized testing environments can be challenging, especially when dealing with Docker-in-Docker (DinD). As a senior DevOps engineer and Docker Captain, I’ve seen firsthand the hurdles that teams face with DinD, and here I’ll share why Testcontainers Cloud is a transformative alternative that’s reshaping the way we handle container-based testing.

2400x1260 Testcontainers Cloud evergreen

Understanding Docker-in-Docker

Docker-in-Docker allows you to run Docker within a Docker container. It’s like Inception for containers — a Docker daemon running inside a Docker container, capable of building and running other containers.

How Docker-in-Docker works

  • Nested Docker daemons: In a typical Docker setup, the Docker daemon runs on the host machine, managing containers directly on the host’s operating system. With DinD, you start a Docker daemon inside a container. This inner Docker daemon operates independently, enabling the container to build and manage its own set of containers.
  • Privileged mode and access to host resources: To run Docker inside a Docker container, the container needs elevated privileges. This is achieved by running the container in privileged mode using the --privileged flag:
docker run --privileged -d docker:dind
  • The --privileged flag grants the container almost all the capabilities of the host machine, including access to device files and the ability to perform system administration tasks. Although this setup enables the inner Docker daemon to function, it poses significant security risks, as it can potentially allow the container to affect the host system adversely.
  • Filesystem considerations: The inner Docker daemon stores images and containers within the file system of the DinD container, typically under /var/lib/docker. Because Docker uses advanced file system features like copy-on-write layers, running an inner Docker daemon within a containerized file system (which may itself use such features) can lead to complex interactions and potential conflicts.
  • Cgroups and namespace isolation: Docker relies on Linux kernel features like cgroups and namespaces for resource isolation and management. When running Docker inside a container, these features must be correctly configured to allow nesting. This process can introduce additional complexity in ensuring that resource limits and isolation behave as expected.

Why teams use Docker-in-Docker

  • Isolated build environments: DinD allows each continuous integration (CI) job to run in a clean, isolated Docker environment, ensuring that builds and tests are not affected by residual state from previous jobs or other jobs running concurrently.
  • Consistency across environments: By encapsulating the Docker daemon within a container, teams can replicate the same Docker environment across different stages of the development pipeline, from local development to CI/CD systems.

Challenges with DinD

Although DinD provides certain benefits, it also introduces significant challenges, such as:

  • Security risks: Running containers in privileged mode can expose the host system to security vulnerabilities, as the container gains extensive access to host resources.
  • Stability issues: Nested containers can lead to storage driver conflicts and other instability issues, causing unpredictable build failures.
  • Complex debugging: Troubleshooting issues in a nested Docker environment can be complicated, as it involves multiple layers of abstraction and isolation.

Real-world challenges

Although Docker-in-Docker might sound appealing, it often introduces more problems than it solves. Before diving into those challenges, let’s briefly discuss Testcontainers and its role in modern testing practices.

What is Testcontainers?

Testcontainers is a popular open source library designed to support integration testing by providing lightweight, disposable instances of common databases, web browsers, or any service that can run in a Docker container. It allows developers to write tests that interact with real instances of external resources, rather than relying on mocks or stubs.

Key features of Testcontainers

  • Realistic testing environment: By using actual services in containers, tests are more reliable and closer to real-world scenarios.
  • Isolation: Each test session, or even each test can run in a clean environment, reducing flakiness due to shared state.
  • Easy cleanup: Containers are ephemeral and are automatically cleaned up after tests, preventing resource leaks.

Dependency on the Docker daemon

A core component of Testcontainers’ functionality lies in its interaction with the Docker daemon. Testcontainers orchestrates Docker resources by starting and stopping containers as needed for tests. This tight integration means that access to a Docker environment is essential wherever the tests are run.

The DinD challenge with Testcontainers in CI

When teams try to include Testcontainers-based integration testing in their CI/CD pipelines, they often face the challenge of providing Docker access within the CI environment. Because Testcontainers requires communication with the Docker daemon, many teams resort to using Docker-in-Docker to emulate a Docker environment inside the CI job.

However, this approach introduces significant challenges, especially when trying to scale Testcontainers usage across the organization.

Case study: The CI pipeline nightmare

We had a Jenkins CI pipeline that utilized Testcontainers for integration tests. To provide the necessary Docker environment, we implemented DinD. Initially, it seemed to work fine, but soon we encountered:

  • Unstable builds: Random failures due to storage driver conflicts and issues with nested container layers. The nested Docker environment sometimes clashed with the host, causing unpredictable behavior.
  • Security concerns: Running containers in privileged mode raised red flags during security audits. Because DinD requires privileged mode to function correctly, it posed significant security risks, potentially allowing containers to access the host system.
  • Performance bottlenecks: Builds were slow, and resource consumption was high. The overhead of running Docker within Docker led to longer feedback loops, hindering developer productivity.
  • Complex debugging: Troubleshooting nested containers became time-consuming. Logs and errors were difficult to trace through the multiple layers of containers, making issue resolution challenging.

We spent countless hours trying to patch these issues, but it felt like playing a game of whack-a-mole.

Why Testcontainers Cloud is a better choice

Testcontainers Cloud is a cloud-based service designed to simplify and enhance your container-based testing. By offloading container execution to the cloud, it provides a secure, scalable, and efficient environment for your integration tests.

How TestContainers Cloud addresses DinD’s shortcomings

Enhanced security

  • No more privileged mode: Eliminates the need for running containers in privileged mode, reducing the attack surface.
  • Isolation: Tests run in isolated cloud environments, minimizing risks to the host system.
  • Compliance-friendly: Easier to pass security audits without exposing the Docker socket or granting elevated permissions.

Improved performance

  • Scalability: Leverage cloud resources to run tests faster and handle higher loads.
  • Resource efficiency: Offloading execution frees up local and CI/CD resources.

Simplified configuration

  • Plug-and-play integration: Minimal changes are required to switch from local Docker to Testcontainers Cloud.
  • No nested complexity: Avoid the intricacies and pitfalls of nested Docker daemons.

Better observability and debugging

  • Detailed logs: Access comprehensive logs through the Testcontainers Cloud dashboard.
  • Real-time monitoring: Monitor containers and resources in real time with enhanced visibility.

Getting started with Testcontainers Cloud

Let’s dive into how you can get the most out of Testcontainers Cloud.

Switching to Testcontainers Cloud allows you to run tests without needing a local Docker daemon:

  • No local Docker required: Testcontainers Cloud handles container execution in the cloud.
  • Consistent environment: Ensures that your tests run in the same environment across different machines.

Additionally, you can easily integrate Testcontainers Cloud into your CI pipeline to run the same tests without scaling your CI infrastructure.

Using Testcontainers Cloud with GitHub Actions

Here’s how you can set up Testcontainers Cloud in your GitHub Actions workflow.

1. Create a new service account

  • Log in to Testcontainers Cloud dashboard.
  • Navigate to Service Accounts:
    • Create a new service account dedicated to your CI environment.
  • Generate an access token:
    • Copy the access token. Remember, you can only view it once, so store it securely.

2. Set the TC_CLOUD_TOKEN environment variable

  • In GitHub Actions:
    • Go to your repository’s Settings > Secrets and variables > Actions.
    • Add a new Repository Secret named TC_CLOUD_TOKEN and paste the access token.

3. Add Testcontainers Cloud to your workflow

Update your GitHub Actions workflow (.github/workflows/ci.yml) to include the Testcontainers Cloud setup.

Example workflow:

name: CI Pipeline

on:
  push:
    branches: [ main ]
  pull_request:
    branches: [ main ]

jobs:
  build:
    runs-on: ubuntu-latest
    steps:
      - uses: actions/checkout@v3

      # ... other preparation steps (dependencies, compilation, etc.) ...

      - name: Set up Java
        uses: actions/setup-java@v3
        with:
          distribution: 'temurin'
          java-version: '17'

      - name: Setup Testcontainers Cloud Client
        uses: atomicjar/testcontainers-cloud-setup-action@v1
        with:
          token: ${{ secrets.TC_CLOUD_TOKEN }}

      # ... steps to execute your tests ...
      - name: Run Tests
        run: ./mvnw test

Notes:

  • The atomicjar/testcontainers-cloud-setup-action GitHub Action automates the installation and authentication of the Testcontainers Cloud Agent in your CI environment.
  • Ensure that your TC_CLOUD_TOKEN is kept secure using GitHub’s encrypted secrets.

Clarifying the components: Testcontainers Cloud Agent and Testcontainers Cloud

To make everything clear:

  • Testcontainers Cloud Agent (CLI in CI environments): In CI environments like GitHub Actions, you use the Testcontainers Cloud Agent (installed via the GitHub Action or command line) to connect your CI jobs to Testcontainers Cloud.
  • Testcontainers Cloud: The cloud service that runs your containers, offloading execution from your CI environment.

In CI environments:

  • Use the Testcontainers Cloud Agent (CLI) within your CI jobs.
  • Authenticate using the TC_CLOUD_TOKEN.
  • Tests executed in the CI environment will use Testcontainers Cloud.

Monitoring and debugging

Take advantage of the Testcontainers Cloud dashboard:

  • Session logs: View logs for individual test sessions.
  • Container details: Inspect container statuses and resource usage.
  • Debugging: Access container logs and output for troubleshooting.

Why developers prefer Testcontainers Cloud over DinD

Real-world impact

After integrating Testcontainers Cloud, our team observed the following:

  • Faster build times: Tests ran significantly faster due to optimized resource utilization.
  • Reduced maintenance: Less time spent on debugging and fixing CI pipeline issues.
  • Enhanced security: Eliminated the need for privileged mode, satisfying security audits.
  • Better observability: Improved logging and monitoring capabilities.

Addressing common concerns

Security and compliance

  • Data isolation: Each test runs in an isolated environment.
  • Encrypted communication: Secure data transmission.
  • Compliance: Meets industry-standard security practices.

Cost considerations

  • Efficiency gains: Time saved on maintenance offsets the cost.
  • Resource optimization: Reduces the need for expensive CI infrastructure.

Compatibility

  • Multi-language support: Works with Java, Node.js, Python, Go, .NET, and more.
  • Seamless integration: Minimal changes required to existing test code.

Conclusion

Switching to Testcontainers Cloud, with the help of the Testcontainers Cloud Agent, has been a game-changer for our team and many others in the industry. It addresses the key pain points associated with Docker-in-Docker and offers a secure, efficient, and developer-friendly alternative.

Key takeaways

  • Security: Eliminates the need for privileged containers and Docker socket exposure.
  • Performance: Accelerates test execution with scalable cloud resources.
  • Simplicity: Simplifies configuration and reduces maintenance overhead.
  • Observability: Enhances debugging with detailed logs and monitoring tools.

As someone who has navigated these challenges, I recommend trying Testcontainers Cloud. It’s time to move beyond the complexities of DinD and adopt a solution designed for modern development workflows.

Additional resources

Dockerize WordPress: Simplify Your Site’s Setup and Deployment

5 November 2024 at 22:15

If you’ve ever been tangled in the complexities of setting up a WordPress environment, you’re not alone. WordPress powers more than 40% of all websites, making it the world’s most popular content management system (CMS). Its versatility is unmatched, but traditional local development setups like MAMP, WAMP, or XAMPP can lead to inconsistencies and the infamous “it works on my machine” problem.

As projects scale and teams grow, the need for a consistent, scalable, and efficient development environment becomes critical. That’s where Docker comes into play, revolutionizing how we develop and deploy WordPress sites. To make things even smoother, we’ll integrate Traefik, a modern reverse proxy that automatically obtains TLS certificates, ensuring that your site runs securely over HTTPS. Traefik is available as a Docker Official Image from Docker Hub.

In this comprehensive guide, I’ll show how to Dockerize your WordPress site using real-world examples. We’ll dive into creating Dockerfiles, containerizing existing WordPress instances — including migrating your data — and setting up Traefik for automatic TLS certificates. Whether you’re starting fresh or migrating an existing site, this tutorial has you covered.

Let’s dive in!

Dockerize WordPress App

Why should you containerize your WordPress site?

Containerizing your WordPress site offers a multitude of benefits that can significantly enhance your development workflow and overall site performance.

Increased page load speed

Docker containers are lightweight and efficient. By packaging your application and its dependencies into containers, you reduce overhead and optimize resource usage. This can lead to faster page load times, improving user experience and SEO rankings.

Efficient collaboration and version control

With Docker, your entire environment is defined as code. This ensures that every team member works with the same setup, eliminating environment-related discrepancies. Version control systems like Git can track changes to your Dockerfiles and to wordpress-traefik-letsencrypt-compose.yml, making collaboration seamless.

Easy scalability

Scaling your WordPress site to handle increased traffic becomes straightforward with Docker and Traefik. You can spin up multiple Docker containers of your application, and Traefik will manage load balancing and routing, all while automatically handling TLS certificates.

Simplified environment setup

Setting up your development environment becomes as simple as running a few Docker commands. No more manual installations or configurations — everything your application needs is defined in your Docker configuration files.

Simplified updates and maintenance

Updating WordPress or its dependencies is a breeze. Update your Docker images, rebuild your containers, and you’re good to go. Traefik ensures that your routes and certificates are managed dynamically, reducing maintenance overhead.

Getting started with WordPress, Docker, and Traefik

Before we begin, let’s briefly discuss what Docker and Traefik are and how they’ll revolutionize your WordPress development workflow.

  • Docker is a cloud-native development platform that simplifies the entire software development lifecycle by enabling developers to build, share, test, and run applications in containers. It streamlines the developer experience while providing built-in security, collaboration tools, and scalable solutions to improve productivity across teams.
  • Traefik is a modern reverse proxy and load balancer designed for microservices. It integrates seamlessly with Docker and can automatically obtain and renew TLS certificates from Let’s Encrypt.

How long will this take?

Setting up this environment might take around 45-60 minutes, especially if you’re integrating Traefik for automatic TLS certificates and migrating an existing WordPress site.

Documentation links

Tools you’ll need

  • Docker Desktop: If you don’t already have the latest version installed, download and install Docker Desktop.
  • A domain name: Required for Traefik to obtain TLS certificates from Let’s Encrypt.
  • Access to DNS settings: To point your domain to your server’s IP address.
  • Code editor: Your preferred code editor for editing configuration files.
  • Command-line interface (CLI): Access to a terminal or command prompt.
  • Existing WordPress data: If you’re containerizing an existing site, ensure you have backups of your WordPress files and MySQL database.

What’s the WordPress Docker Bitnami image?

To simplify the process, we’ll use the Bitnami WordPress image from Docker Hub, which comes pre-packaged with a secure, optimized environment for WordPress. This reduces configuration time and ensures your setup is up to date with the latest security patches.

Using the Bitnami WordPress image streamlines your setup process by:

  • Simplifying configuration: Bitnami images come with sensible defaults and configurations that work out of the box, reducing the time spent on setup.
  • Enhancing security: The images are regularly updated to include the latest security patches, minimizing vulnerabilities.
  • Ensuring consistency: With a standardized environment, you avoid the “it works on my machine” problem and ensure consistency across development, staging, and production.
  • Including additional tools: Bitnami often includes helpful tools and scripts for backups, restores, and other maintenance tasks.

By choosing the Bitnami WordPress image, you can leverage a tested and optimized environment, reducing the risk of configuration errors and allowing you to focus more on developing your website.

Key features of Bitnami WordPress Docker image:

  • Optimized for production: Configured with performance and security in mind.
  • Regular updates: Maintained to include the latest WordPress version and dependencies.
  • Ease of use: Designed to be easy to deploy and integrate with other services, such as databases and reverse proxies.
  • Comprehensive documentation: Offers guides and support to help you get started quickly.

Why we use Bitnami in the examples:

In our Docker Compose configurations, we specified:

WORDPRESS_IMAGE_TAG=bitnami/wordpress:6.3.1

This indicates that we’re using the Bitnami WordPress image, version 6.3.1. The Bitnami image aligns well with our goals for a secure, efficient, and easy-to-manage WordPress environment, especially when integrating with Traefik for automatic TLS certificates.

By leveraging the Bitnami WordPress Docker image, you’re choosing a robust and reliable foundation for your WordPress projects. This approach allows you to focus on building great websites without worrying about the underlying infrastructure.

How to Dockerize an existing WordPress site with Traefik

Let’s walk through dockerizing your WordPress site using practical examples, including your .env and wordpress-traefik-letsencrypt-compose.yml configurations. We’ll also cover how to incorporate your existing data into the Docker containers.

Step 1: Preparing your environment variables

First, create a .env file in the same directory as your wordpress-traefik-letsencrypt-compose.yml file. This file will store all your environment variables.

Example .env file:

# Traefik Variables
TRAEFIK_IMAGE_TAG=traefik:2.9
TRAEFIK_LOG_LEVEL=WARN
TRAEFIK_ACME_EMAIL=your-email@example.com
TRAEFIK_HOSTNAME=traefik.yourdomain.com
# Basic Authentication for Traefik Dashboard
# Username: traefikadmin
# Passwords must be encoded using BCrypt https://hostingcanada.org/htpasswd-generator/
TRAEFIK_BASIC_AUTH=traefikadmin:$$2y$$10$$EXAMPLEENCRYPTEDPASSWORD

# WordPress Variables
WORDPRESS_MARIADB_IMAGE_TAG=mariadb:11.4
WORDPRESS_IMAGE_TAG=bitnami/wordpress:6.6.2
WORDPRESS_DB_NAME=wordpressdb
WORDPRESS_DB_USER=wordpressdbuser
WORDPRESS_DB_PASSWORD=your-db-password
WORDPRESS_DB_ADMIN_PASSWORD=your-db-admin-password
WORDPRESS_TABLE_PREFIX=wpapp_
WORDPRESS_BLOG_NAME=Your Blog Name
WORDPRESS_ADMIN_NAME=AdminFirstName
WORDPRESS_ADMIN_LASTNAME=AdminLastName
WORDPRESS_ADMIN_USERNAME=admin
WORDPRESS_ADMIN_PASSWORD=your-admin-password
WORDPRESS_ADMIN_EMAIL=admin@yourdomain.com
WORDPRESS_HOSTNAME=wordpress.yourdomain.com
WORDPRESS_SMTP_ADDRESS=smtp.your-email-provider.com
WORDPRESS_SMTP_PORT=587
WORDPRESS_SMTP_USER_NAME=your-smtp-username
WORDPRESS_SMTP_PASSWORD=your-smtp-password

Notes:

  • Replace placeholder values (e.g., your-email@example.com, your-db-password) with your actual credentials.
  • Do not commit this file to version control if it contains sensitive information.
  • Use a password encryption tool to generate the encrypted password for TRAEFIK_BASIC_AUTH. For example, you can use the htpasswd generator.

Step 2: Creating the Docker Compose file

Create a wordpress-traefik-letsencrypt-compose.yml file that defines your services, networks, and volumes. This YAML file is crucial for configuring your WordPress installation through Docker.

Example wordpress-traefik-letsencrypt-compose.yml.

networks:
  wordpress-network:
    external: true
  traefik-network:
    external: true

volumes:
  mariadb-data:
  wordpress-data:
  traefik-certificates:

services:
  mariadb:
    image: ${WORDPRESS_MARIADB_IMAGE_TAG}
    volumes:
      - mariadb-data:/var/lib/mysql
    environment:
      MARIADB_DATABASE: ${WORDPRESS_DB_NAME}
      MARIADB_USER: ${WORDPRESS_DB_USER}
      MARIADB_PASSWORD: ${WORDPRESS_DB_PASSWORD}
      MARIADB_ROOT_PASSWORD: ${WORDPRESS_DB_ADMIN_PASSWORD}
    networks:
      - wordpress-network
    healthcheck:
      test: ["CMD", "healthcheck.sh", "--connect", "--innodb_initialized"]
      interval: 10s
      timeout: 5s
      retries: 3
      start_period: 60s
    restart: unless-stopped

  wordpress:
    image: ${WORDPRESS_IMAGE_TAG}
    volumes:
      - wordpress-data:/bitnami/wordpress
    environment:
      WORDPRESS_DATABASE_HOST: mariadb
      WORDPRESS_DATABASE_PORT_NUMBER: 3306
      WORDPRESS_DATABASE_NAME: ${WORDPRESS_DB_NAME}
      WORDPRESS_DATABASE_USER: ${WORDPRESS_DB_USER}
      WORDPRESS_DATABASE_PASSWORD: ${WORDPRESS_DB_PASSWORD}
      WORDPRESS_TABLE_PREFIX: ${WORDPRESS_TABLE_PREFIX}
      WORDPRESS_BLOG_NAME: ${WORDPRESS_BLOG_NAME}
      WORDPRESS_FIRST_NAME: ${WORDPRESS_ADMIN_NAME}
      WORDPRESS_LAST_NAME: ${WORDPRESS_ADMIN_LASTNAME}
      WORDPRESS_USERNAME: ${WORDPRESS_ADMIN_USERNAME}
      WORDPRESS_PASSWORD: ${WORDPRESS_ADMIN_PASSWORD}
      WORDPRESS_EMAIL: ${WORDPRESS_ADMIN_EMAIL}
      WORDPRESS_SMTP_HOST: ${WORDPRESS_SMTP_ADDRESS}
      WORDPRESS_SMTP_PORT: ${WORDPRESS_SMTP_PORT}
      WORDPRESS_SMTP_USER: ${WORDPRESS_SMTP_USER_NAME}
      WORDPRESS_SMTP_PASSWORD: ${WORDPRESS_SMTP_PASSWORD}
    networks:
      - wordpress-network
      - traefik-network
    healthcheck:
      test: timeout 10s bash -c ':> /dev/tcp/127.0.0.1/8080' || exit 1
      interval: 10s
      timeout: 5s
      retries: 3
      start_period: 90s
    labels:
      - "traefik.enable=true"
      - "traefik.http.routers.wordpress.rule=Host(`${WORDPRESS_HOSTNAME}`)"
      - "traefik.http.routers.wordpress.service=wordpress"
      - "traefik.http.routers.wordpress.entrypoints=websecure"
      - "traefik.http.services.wordpress.loadbalancer.server.port=8080"
      - "traefik.http.routers.wordpress.tls=true"
      - "traefik.http.routers.wordpress.tls.certresolver=letsencrypt"
      - "traefik.http.services.wordpress.loadbalancer.passhostheader=true"
      - "traefik.http.routers.wordpress.middlewares=compresstraefik"
      - "traefik.http.middlewares.compresstraefik.compress=true"
      - "traefik.docker.network=traefik-network"
    restart: unless-stopped
    depends_on:
      mariadb:
        condition: service_healthy
      traefik:
        condition: service_healthy

  traefik:
    image: ${TRAEFIK_IMAGE_TAG}
    command:
      - "--log.level=${TRAEFIK_LOG_LEVEL}"
      - "--accesslog=true"
      - "--api.dashboard=true"
      - "--api.insecure=true"
      - "--ping=true"
      - "--ping.entrypoint=ping"
      - "--entryPoints.ping.address=:8082"
      - "--entryPoints.web.address=:80"
      - "--entryPoints.websecure.address=:443"
      - "--providers.docker=true"
      - "--providers.docker.endpoint=unix:///var/run/docker.sock"
      - "--providers.docker.exposedByDefault=false"
      - "--certificatesresolvers.letsencrypt.acme.tlschallenge=true"
      - "--certificatesresolvers.letsencrypt.acme.email=${TRAEFIK_ACME_EMAIL}"
      - "--certificatesresolvers.letsencrypt.acme.storage=/etc/traefik/acme/acme.json"
      - "--metrics.prometheus=true"
      - "--metrics.prometheus.buckets=0.1,0.3,1.2,5.0"
      - "--global.checkNewVersion=true"
      - "--global.sendAnonymousUsage=false"
    volumes:
      - /var/run/docker.sock:/var/run/docker.sock
      - traefik-certificates:/etc/traefik/acme
    networks:
      - traefik-network
    ports:
      - "80:80"
      - "443:443"
    healthcheck:
      test: ["CMD", "wget", "http://localhost:8082/ping","--spider"]
      interval: 10s
      timeout: 5s
      retries: 3
      start_period: 5s
    labels:
      - "traefik.enable=true"
      - "traefik.http.routers.dashboard.rule=Host(`${TRAEFIK_HOSTNAME}`)"
      - "traefik.http.routers.dashboard.service=api@internal"
      - "traefik.http.routers.dashboard.entrypoints=websecure"
      - "traefik.http.services.dashboard.loadbalancer.server.port=8080"
      - "traefik.http.routers.dashboard.tls=true"
      - "traefik.http.routers.dashboard.tls.certresolver=letsencrypt"
      - "traefik.http.services.dashboard.loadbalancer.passhostheader=true"
      - "traefik.http.routers.dashboard.middlewares=authtraefik"
      - "traefik.http.middlewares.authtraefik.basicauth.users=${TRAEFIK_BASIC_AUTH}"
      - "traefik.http.routers.http-catchall.rule=HostRegexp(`{host:.+}`)"
      - "traefik.http.routers.http-catchall.entrypoints=web"
      - "traefik.http.routers.http-catchall.middlewares=redirect-to-https"
      - "traefik.http.middlewares.redirect-to-https.redirectscheme.scheme=https"
    restart: unless-stopped

Notes:

  • Networks: We’re using external networks (wordpress-network and traefik-network). We’ll create these networks before deploying.
  • Volumes: Volumes are defined for data persistence.
  • Services: We’ve defined mariadb, wordpress, and traefik services with the necessary configurations.
  • Health checks: Ensure that services are healthy before dependent services start.
  • Labels: Configure Traefik routing, HTTPS settings, and enable the dashboard with basic authentication.

Step 3: Creating external networks

Before deploying your Docker Compose configuration, you need to create the external networks specified in your wordpress-traefik-letsencrypt-compose.yml.

Run the following commands to create the networks:

docker network create traefik-network
docker network create wordpress-network

Step 4: Deploying your WordPress site

Deploy your WordPress site using Docker Compose with the following command (Figure 1):

docker compose -f wordpress-traefik-letsencrypt-compose.yml -p website up -d
Screenshot of running "docker compose -f wordpress-traefik-letsencrypt-compose.yml -p website up -d" commmand.
Figure 1: Using Docker Compose to deploy your WordPress site.

Explanation:

  • -f wordpress-traefik-letsencrypt-compose.yml: Specifies the Docker Compose file to use.
  • -p website: Sets the project name to website.
  • up -d: Builds, (re)creates, and starts containers in detached mode.

Step 5: Verifying the deployment

Check that all services are running (Figure 2):

docker ps
Screenshot of services running, showing columns for Container ID, Image, Command, Created, Status, Ports, and Names.
Figure 2: Services running.

You should see the mariadb, wordpress, and traefik services up and running.

Step 6: Accessing your WordPress site and Traefik dashboard

WordPress site: Navigate to https://wordpress.yourdomain.com in your browser. Type in the username and password you set earlier in the .env file and click the Log In button. You should see your WordPress site running over HTTPS, with a valid TLS certificate automatically obtained by Traefik (Figure 3).

Screenshot of WordPress dashboard showing Site Health Status, At A Glance, Quick Draft, and other informational sections.
Figure 3: WordPress dashboard.

Important: To get cryptographic certificates, you need to set up A-type records in your external DNS zone that point to your server’s IP address where Traefik is installed. If you’ve just set up these records, wait a bit before starting the service installation because it can take anywhere from a few minutes to 48 hours — sometimes even longer — for these changes to fully spread across DNS servers.

  • Traefik dashboard: Access the Traefik dashboard at https://traefik.yourdomain.com. You’ll be prompted for authentication. Use the username and password specified in your .env file (Figure 4).
Screenshot of Traefik dashboard showing information on Entrypoints, Routers, Services, and Middleware.
Figure 4: Traefik dashboard.

Step 7: Incorporating your existing WordPress data

If you’re migrating an existing WordPress site, you’ll need to incorporate your existing files and database into the Docker containers.

Step 7.1: Restoring WordPress files

Copy your existing WordPress files into the wordpress-data volume.

Option 1: Using Docker volume mapping

Modify your wordpress-traefik-letsencrypt-compose.yml to map your local WordPress files directly:

volumes:
  - ./your-wordpress-files:/bitnami/wordpress

Option 2: Copying files into the running container

Assuming your WordPress backup is in ./wordpress-backup, run:

docker cp ./wordpress-backup/. wordpress_wordpress_1:/bitnami/wordpress/

Step 7.2: Importing your database

Export your existing WordPress database using mysqldump or phpMyAdmin.

Example:

mysqldump -u your_db_user -p your_db_name > wordpress_db_backup.sql

Copy the database backup into the MariaDB container:

docker cp wordpress_db_backup.sql wordpress_mariadb_1:/wordpress_db_backup.sql

Access the MariaDB container:

docker exec -it wordpress_mariadb_1 bash

Import the database:

mysql -u root -p${WORDPRESS_DB_ADMIN_PASSWORD} ${WORDPRESS_DB_NAME} < wordpress_db_backup.sql

Step 7.3: Update wp-config.php (if necessary)

Because we’re using environment variables, WordPress should automatically connect to the database. However, if you have custom configurations, ensure they match the settings in your .env file.

Note: The Bitnami WordPress image manages wp-config.php automatically based on environment variables. If you need to customize it further, you can create a custom Dockerfile.

Step 8: Creating a custom Dockerfile (optional)

If you need to customize the WordPress image further, such as installing additional PHP extensions or modifying configuration files, create a Dockerfile in your project directory.

Example Dockerfile:

# Use the Bitnami WordPress image as the base
FROM bitnami/wordpress:6.3.1

# Install additional PHP extensions if needed
# RUN install_packages php7.4-zip php7.4-mbstring

# Copy custom wp-content (if not using volume mapping)
# COPY ./wp-content /bitnami/wordpress/wp-content

# Set working directory
WORKDIR /bitnami/wordpress

# Expose port 8080
EXPOSE 8080

Build the custom image:

Modify your wordpress-traefik-letsencrypt-compose.yml to build from the Dockerfile:

wordpress:
  build: .
  # Rest of the configuration

Then, rebuild your containers:

docker compose -p wordpress up -d --build

Step 9: Customizing WordPress within Docker

Adding themes and plugins

Because we’ve mapped the wordpress-data volume, any changes you make within the WordPress container (like installing plugins or themes) will persist across container restarts.

  • Via WordPress admin dashboard: Install themes and plugins as you normally would through the WordPress admin interface (Figure 5).
Screenshot of WordPress admin dashboard showing plugin choices such as Classic Editor, Akismet Anti-spam, and Jetpack.
Figure 5: Adding plugins.
  • Manually: Access the container and place your themes or plugins directly.

Example:

docker exec -it wordpress_wordpress_1 bash
cd /bitnami/wordpress/wp-content/themes
# Add your theme files here

Managing and scaling WordPress with Docker and Traefik

Scaling your WordPress service

To handle increased traffic, you might want to scale your WordPress instances.

docker compose -p wordpress up -d --scale wordpress=3

Traefik will automatically detect the new instances and load balance traffic between them.

Note: Ensure that your WordPress setup supports scaling. You might need to externalize session storage or use a shared filesystem for media uploads.

Updating services

To update your services to the latest images:

Pull the latest images:

docker compose -p wordpress pull

Recreate containers:

docker compose -p wordpress up -d

Monitoring and logs

Docker logs:
View logs for a specific service:

docker compose -p wordpress logs -f wordpress

Traefik dashboard:
Use the Traefik dashboard to monitor routing, services, and health checks.

Optimizing your WordPress Docker setup

Implementing caching with Redis

To improve performance, you can add Redis for object caching.

Update wordpress-traefik-letsencrypt-compose.yml:

services:
  redis:
    image: redis:alpine
    networks:
      - wordpress-network
    restart: unless-stopped

Configure WordPress to use Redis:

  • Install a Redis caching plugin like Redis Object Cache.
  • Configure it to connect to the redis service.

Security best practices

  • Secure environment variables:
    • Use Docker secrets or environment variables to manage sensitive information securely.
    • Avoid committing sensitive data to version control.
  • Restrict access to Docker socket:
    • The Docker socket is mounted read-only (:ro) to minimize security risks.
  • Keep images updated:
    • Regularly update your Docker images to include security patches and improvements.

Advanced Traefik configurations

  • Middleware: Implement middleware for rate limiting, IP whitelisting, and other request transformations.
  • Monitoring: Integrate with monitoring tools like Prometheus and Grafana for advanced insights.
  • Wildcard certificates: Configure Traefik to use wildcard certificates if you have multiple subdomains.

Wrapping up

Dockerizing your WordPress site with Traefik simplifies your development and deployment processes, offering consistency, scalability, and efficiency. By leveraging practical examples and incorporating your existing data, we’ve created a tailored guide to help you set up a robust WordPress environment.

Whether you’re managing an existing site or starting a new project, this setup empowers you to focus on what you do best — developing great websites — while Docker and Traefik handle the heavy lifting.

So go ahead, give it a shot! Embracing these tools is a step toward modernizing your workflow and staying ahead in the ever-evolving tech landscape.

Learn more

To further enhance your skills and optimize your setup, check out these resources:

❌
❌