Reading view

There are new articles available, click to refresh the page.

How to Improve Your DevOps Automation

DevOps brings together developers and operations teams to create better software by introducing organizational principles that encourage communication, collaboration, innovation, speed, security, and agility throughout the software development lifecycle. And, the popularity and adoption rates of DevOps continue to grow, with 83% of 10,000 global developers surveyed saying that they use the principles, according to an April 2024 report commissioned by the Continuous Delivery Foundation (CDF), a Linux Foundation project.

DevOps includes everything from continuous integration/improvement and continuous deployment/delivery (CI/CD) as code is created and modified, to critical automation capabilities covering a wide range of development processes. Also built into DevOps principles is a focus on creating better applications from code conception all the way through to end-user experiences. Before this unified framework existed, code typically was created in separate silos that did not easily allow collaboration or foster efficient management, speed, or quality. These conditions eventually inspired the DevOps framework and principles.  

DevOps principles and practices also help organizations by constantly integrating user feedback regarding application features, shortcomings, and code glitches, thereby reducing security and operational risks in code as it reaches production.

This blog post aims to help enterprises focus on one of these critical DevOps capabilities in particular — the use of automation to speed and streamline processes across the development lifecycle of applications — to further expand and drive the benefits of using DevOps processes within an organization.

As DevOps use continues to grow, more developers are finding that the Docker containerization platform integrates well as a crucial component of DevOps practices, especially due to its built-in automation features and capabilities.

2400x1260 evergreen docker blog g

What is DevOps automation?

DevOps automation is a major time-saver for developers and operations teams because it automates labor-intensive and repetitive processes that can free up developers to instead work on new code innovations and ideas that can create business value.  

Automating repetitive manual tasks using DevOps automation tools drives notable efficiencies and productivity boosts for developers and organizations, using automatic actions that eliminate frequent developer or operations team intervention. 

What DevOps processes can you automate?

DevOps automation is especially valuable because it can be used on a broad spectrum of tasks in the application development environment, including CI/CD pipelines and workflows, code writing, monitoring and logging, and Infrastructure as Code (IaC) tools. It can also help improve and streamline configuration management, infrastructure provisioning, unit tests, code testing, security steps and scans, troubleshooting, code review, deploying and delivering code, project management, and more.

By bringing beneficial and time-saving automation to the DevOps lifecycle, developers can create cleaner and more secure code with much less manual intervention and human error compared to traditional software development methods. 

Benefits of DevOps automation tools

For development and operations teams, using DevOps automation to streamline and improve their operations goes far beyond just reducing human error rates and increasing the efficiency and speed of code creation and the deployment process.

Other benefits of DevOps automation include improved consistency and reliability, delivery of predictable and repeatable results, and enhanced scalability and manageability of multiple applications and processes. These benefits become possible with automation because it reduces many human mistakes and miscalculations.

DevOps automation benefits can also include smoother collaboration among multiple developers working on applications at the same time by automatically handling merge conflicts, and performing automatic code testing for multiple developers at once. Automation that troubleshoots applications can also speed up project development times by immediately notifying systems personnel of problems as they arise.

How to automate DevOps with Docker

As a flexible tool for DevOps automation, Docker is available in four subscription levels, from the free Docker Personal version to the top-of-the-line Docker Business tier

Docker Business delivers a wide range of helpful tools that empower DevOps teams to identify development bottlenecks where automation can free up resources and resolve repetitive tasks and operations. The following tools are included with Docker Business. (Read our September 2024 announcement about upgraded Docker subscription plans that will deliver even more value, flexibility, and power to your development workflows.) 

Docker Image Access Management

With Docker Business, developers and operations teams can quickly start automating tasks using features such as Docker Image Access Management, which gives administrators control over the types of container images that developers can pull and use from Docker Hub. This includes Docker Official Images, Docker Verified Publisher Images, and community images. Using Image Access Management, developers and teams can more easily search private registries and community repositories for needed container images to use to build their applications. 

Image Access Management allows organizations to give developers freedom of choice while providing some guardrails to prevent developers from accidentally using untrusted, malicious community images as components of their applications. This is an important benefit, compared with only allowing developers to use a handful of internally built images, for example.

Docker Image Access Management is available only to Docker Business customers.  

Docker automated testing 

Other Docker DevOps automation features include automated testing, including source code repository testing, that can be done through Docker Hub to automatically test changes to source code repositories using containers. Any Docker Hub repository can enable an autotest function to run tests on pull requests to the source code repository to create a continuous integration testing service.

Automated test files to perform the tests can be set up by creating a docker-compose.test.yml file, which defines a service that lists the tests to be run. The docker-compose.test.yml file should be placed in the same directory that contains the Dockerfile used to build the image.

Hardened Docker Desktop

To automate security within Docker, administrators can use a wide range of features within Hardened Docker Desktop, which is available to Docker Business subscribers. Hardened Docker Desktop security features aim to bolster the security of developer environments while causing minimal speed or performance impacts on developer experiences or productivity. 

These features allow administrators to enforce strict security settings, which prevent developers and containers from bypassing the controls intentionally or unintentionally. The features also enable enhanced container isolation capabilities to prevent potential security threats, such as malicious payloads, from breaching the Docker Desktop Linux VM and the underlying host.

Using Hardened Docker Desktop, security administrators can take more control and ownership over Docker Desktop configurations, removing and preventing potential changes by users, which is vital for security-conscious organizations.

Automated builds

Another automation and productivity tool is the Docker Automated builds feature, which automatically builds images from source code in an external repository and then pushes the built image to designated Docker repositories. Available in the Docker Business, Pro, or Teams tiers, Automated builds — also called autobuilds — create a list of branches and tags that can be built into Docker images using a series of commands. Automated builds can handle images of up to 10 GB in size.

Enhanced collaboration tools 

Throughout Docker’s unified suite, tools built to deliver enhanced collaboration are available to developers and operations teams to work together to get the most out of their projects and applications.

Everything from Docker Desktop to Docker Engine, Docker CLI, Docker Compose, Docker Build/BuildKit, Docker Desktop Extensions, and more are designed to enable developers and operations teams to accelerate productivity, reduce code errors, increase security, drive innovation, and save valuable time throughout the software development process. 

Easier scaling and orchestration with Kubernetes integration

Docker’s containerization platform also integrates well with the Kubernetes container orchestration platform, optimizing the developer experience for container development, deployment, and management. Docker and Kubernetes can work together using Docker Engine as a user-friendly and secure foundation for basic Kubernetes (K8s) functionality, or by using Docker Desktop for a more comprehensive approach that avoids potential challenges associated with do-it-yourself container configurations. Docker Desktop includes K8s setup at the push of a button, which is one of its numerous and useful automation features. 

Support and troubleshooting 

As Docker continues to mature, its knowledge base is constantly being expanded and deepened, with core documentation and resources freely available to Docker developers within the Docker ecosystem. And, because Docker uses a collaborative approach between developers and operations teams, developers can often find common answers to their inquiries and learn from each other to tackle most issues.

More information and help about using Docker can be found in the Docker Training page, which offers live and on-demand training and other resources to help developers and teams negotiate their Docker landscapes and learn fresh skills to resolve technical problems. 

Other resources: Docker Scout and Docker Build Cloud

Docker offers even more tools to help with automation, collaboration, and creating better and more nimble code for developer teams and operations managers.

Docker Scout, for example, is built to help organizations better protect their software supply chain security when using container images, which may contain software elements that are susceptible to security vulnerabilities. 

Docker Scout helps with this issue by proactively analyzing container images and compiling a Software Bill of Materials (SBOM), which is a detailed inventory of code included in an application or container. That SBOM is then matched against a continuously updated vulnerability database to pinpoint and correct security weaknesses to help make the code more secure.

Docker Build Cloud is a Docker service to help developers build container images more quickly, both locally and in the cloud. Those builds run on cloud infrastructure that requires no configuration and where the environment is optimally dimensioned for all workloads using a remote build cache. This approach ensures fast builds anywhere for all team members. 

To use Docker Build Cloud, developers take the same steps they would take for a regular build using the command docker buildx build. With a regular build command, the build runs on a local instance of BuildKit, bundled with the Docker daemon. But when using Docker Build Cloud, the build request is sent to a BuildKit instance running remotely, in the cloud, with all data encrypted in transit. Docker Build Cloud provides several benefits over local builds, including faster build speed, shared build cache, and native multi-platform builds.

Future trends in DevOps automation

As DevOps automation continues to mature, it will gain more capabilities from artificial intelligence (AI), machine learning (ML), serverless architectures, cloud-native platforms, and other technologies across the IT landscape. 

Such advancements can be found in Docker’s AI collaborations with NVIDIA. For example, Docker Desktop dovetails with the NVIDIA AI Workbench, which is an easy-to-use toolkit that lets developers create, test, and customize AI and machine learning models on a PC or workstation and then scale them to a data center or public cloud. NVIDIA AI Workbench makes interactive development workflows easier, while automating technical tasks that can halt beginners and derail experts. 

DevOps automation is ripe for further improvements and enhancements from AI and ML in areas of agility, process improvements, and more for developers and operations teams. AI and ML will drive further labor savings for software development teams by delivering fresh new automated, self-service tools that free them up from a broader range of routine tasks, giving them more time to conduct valuable and critical work that will drive their companies forward.

Docker will be an important part of this changing landscape as the unified suites and tools continue to expand and deliver further new benefits and capabilities to DevOps, the Docker ecosystem, and developers and operations teams around the world.

Wrapping up

Improving DevOps automation by using the Docker containerization platform inside your business organization is a smart strategy that helps developers and operations teams deliver their best work with efficiency, creativity, and broad collaboration.

Docker Business plays a leadership role in enhancing DevOps automation in companies around the world as they look to automate their DevOps operations effectively.

Ready to automate your team’s DevOps processes? Find out how Docker Business can transform your development, or if you still have questions, reach out to one of our experts to get started!

Learn more

Exploring Docker for DevOps: What It Is and How It Works

DevOps aims to dramatically improve the software development lifecycle by bringing together the formerly separated worlds of development and operations using principles that strive to make software creation more efficient. DevOps practices form a useful roadmap to help developers in every phase of the development lifecycle, from code planning to building, task automation, testing, monitoring, releasing, and deploying applications.

As DevOps use continues to expand, many developers and organizations find that the Docker containerization platform integrates well as a crucial component of DevOps practices. Using Docker, developers have the advantage of being able to collaborate in standardized environments using local containers and remote container tools where they can write their code, share their work, and collaborate. 

In this blog post, we will explore the use of Docker within DevOps practices and explain how the combination can help developers create more efficient and powerful workflows.

2400x1260 evergreen docker blog c

What is DevOps?

DevOps practices are beneficial in the world of developers and code creation because they encourage smart planning, collaboration, and orderly processes and management throughout the software development pipeline. Without unified DevOps principles, code is typically created in individual silos that can hamper creativity, efficient management, speed, and quality.

Bringing software developers, operations teams, and processes together under DevOps principles, can improve both developer and organizational efficiency through increased collaboration, agility, and innovation. DevOps brings these positive changes to organizations by constantly integrating user feedback regarding application features, shortcomings, and code glitches and — by making changes as needed on the fly — reducing operational and security risks in production code.

CI/CD

In addition to collaboration, DevOps principles are built around procedures for continuous integration/improvement (CI) and continuous deployment/delivery (CD) of code, shortening the cycle between development and production. This CI/CD approach lets teams more quickly adapt to feedback and thus build better applications from code conception all the way through to end-user experiences.

Using CI, developers can frequently and automatically integrate their changes into the source code as they create new code, while the CD side tests and delivers those vetted changes to the production environment. By integrating CI/CD practices, developers can create cleaner and safer code and resolve bugs ahead of production through automation, collaboration, and strong QA pipelines. 

What is Docker?

The Docker containerization platform is a suite of tools, standards, and services that enable DevOps practices for application developers. Docker is used to develop, ship, and run applications within lightweight containers. This approach allows developers to separate their applications from their business infrastructure, giving them the power to deliver better code more quickly. 

The Docker platform enables developers to package and run their application code in lightweight, local, standardized containers, which provide a loosely isolated environment that contains everything needed to run the application — including tools, packages, and libraries. By using Docker containers on a Docker client, developers can run an application without worrying about what is installed on the host, giving them huge flexibility, security, and collaborative advantages over virtual machines. 

In this controlled environment, developers can use Docker to create, monitor, and push their applications into a test environment, run automated and manual tests as needed, correct bugs, and then validate the code before deploying it for use in production. 

Docker also allows developers to run many containers simultaneously on a host, while allowing those same containers to be shared with others. Such a collaborative workspace can foster healthy and direct communications between developers, allowing development processes to become easier, more accurate, and more secure. 

Containers vs. virtualization

Containers are an abstraction that packages application code and dependencies together. Instances of the container can then be created, started, stopped, moved, or deleted using the Docker API or command-line interface (CLI). Containers can be connected to one or more networks, be attached to storage, or create new images based on their current states. 

Containers differ from virtual machines, which use a software abstraction layer on top of computer hardware, allowing the hardware to be shared more efficiently in multiple instances that will run individual applications. Docker containers require fewer physical hardware resources than virtual machines, and they also offer faster startup times and lower overhead. This makes Docker ideal for high-velocity environments, where rapid software development cycles and scalability are crucial. 

Basic components of Docker 

The basic components of Docker include:

  • Docker images: Docker images are the blueprints for your containers. They are read-only templates that contain the instructions for creating a Docker container. You can think of a container image as a snapshot of a specific state of your application.
  • Containers: Containers are the instances of Docker images. They are lightweight and portable, encapsulating your application along with its dependencies. Containers can be created, started, stopped, moved, and deleted using simple Docker commands.
  • Dockerfiles: A Dockerfile is a text document containing a series of instructions on how to build a Docker image. It includes commands for specifying the base image, copying files, installing dependencies, and setting up the environment. 
  • Docker Engine: Docker Engine is the core component of Docker. It’s a client-server application that includes a server with a long-running daemon process, APIs for interacting with the daemon, and a CLI client.
  • Docker Desktop: Docker Desktop is a commercial product sold and supported by Docker, Inc. It includes the Docker Engine and other open source components, proprietary components, and features like an intuitive GUI, synchronized file shares, access to cloud resources, debugging features, native host integration, governance, security features, and administrative settings management. 
  • Docker Hub: Docker Hub is a public registry where you can store and share Docker images. It serves as a central place to find official Docker images and user-contributed images. You can also use Docker Hub to automate your workflows by connecting it to your CI/CD pipelines.

Basic Docker commands

Docker commands are simple and intuitive. For example:

  • docker run: Runs a Docker container from a specified image. For example, docker run hello-world will run a container from the “hello-world” image.
  • docker build: Builds an image from a Dockerfile. For example, docker build -t my-app . will build an image named “my-app” from the Dockerfile in the current directory.
  • docker pull: Pulls an image from Docker Hub. For example, docker pull nginx will download the latest NGINX image from Docker Hub.
  • docker ps: Lists all running containers. For example, docker ps -a will list all containers, including stopped ones.
  • docker stop: Stops a running Docker container. For example, docker stop <container_id> will stop the container with the specified ID.
  • docker rm: Removes a stopped container. For example, docker rm <container_id> will remove the container with the specified ID.

How Docker is used in DevOps

One of Docker’s most important benefits for developers is its critical role in facilitating CI/CD in the application development process. This makes it easier and more seamless for developers to work together to create better code.

Docker is a build environment where developers can get predictable results building and testing their applications inside Docker containers and where it is easier to get consistent, reproducible results compared to other development environments. Developers can use Dockerfiles to define the exact requirements needed for their build environments, including programming runtimes, operating systems, binaries, and more.

Using Docker as a build environment also makes application maintenance easier. For example, you can update to a new version of a programming runtime by just changing a tag or digest in a Dockerfile. That is easier than the process required on a virtual machine to manually reinstall a newer version and update the related configuration files.

Automated testing is also easier using Docker Hub, which can automatically test changes to source code repositories using containers or push applications into a test environment and run automated and manual tests.

Docker can be integrated with DevOps tools including Jenkins, GitLab, Kubernetes, and others, simplifying DevOps processes by automating pipelines and scaling operations as needed. 

Benefits of using Docker for DevOps 

Because the Docker containers used for development are the same ones that are moved along for testing and production, the Docker platform provides consistency across environments and delivers big benefits to developer teams and operations managers. Each Docker container is isolated from others being run, eliminating conflicting dependencies. Developers are empowered to build, run, and test their code while collaborating with others and using all the resources available to them within the Docker platform environment. 

Other benefits to developers include speed and agility, resource efficiency, error reduction, integrated version control, standardization, and the ability to write code once and run it on any system. Additionally, applications built on Docker can be pushed easily to customers on any computing environment, assuring quick, easy, and consistent delivery and deployment process. 

4 Common Docker challenges in DevOps

Implementing Docker in a DevOps environment can offer numerous benefits, but it also presents several challenges that teams must navigate:

1. Learning curve and skills gap

Docker introduces new concepts and technologies that require teams to acquire new skills. This can be a significant hurdle, especially if the team lacks experience with containerization. Docker’s robust documentation and guides and our international community can help new users quickly ramp up.

2. Security concerns

Ensuring the security of containerized applications involves addressing vulnerabilities in container images, managing secrets, and implementing network policies. Misconfigurations and running containers with root privileges can lead to security risks. Docker does, however, provide security guardrails for both administrators and developers.

The Docker Business subscription provides security and management at scale. For example, administrators can enforce sign-ins across Docker products for developers and efficiently manage, scale, and secure Docker Desktop instances using DevOps security controls like Enhanced Container Isolation and Registry Access Management.

Additionally, Docker offers security-focused tools, like Docker Scout, which helps administrators and developers secure the software supply chain by proactively monitoring image vulnerabilities and implementing remediation strategies. Introduced in 2024, Docker Scout health scores rate the security and compliance status of container images within Docker Hub, providing a single, quantifiable metric to represent the “health” of an image. This feature addresses one of the key friction points in developer-led software security — the lack of security expertise — and makes it easier for developers to turn critical insights from tools into actionable steps.

3. Microservice architectures

Containers and the ecosystem around them are specifically geared towards microservice architectures. You can run a monolith in a container, but you will not be able to leverage all of the benefits and paradigms of containers in that way. Instead, containers can be a useful gateway to microservices. Users can start pulling out individual pieces from a monolith into more containers over time.

4. Image management

Image management in Docker can also be a challenge for developers and teams as they search private registries and community repositories for images to use in building their applications. Docker Image Access Management can help with this challenge as it gives administrators control over which types of images — such as Docker Official Images, Docker Verified Publisher Images, or community images — their developers can pull for use from Docker Hub. Docker Hub tries to help by publishing only official images and verifying content from trusted partners. 

Using Image Access Management controls helps prevent developers from accidentally using an untrusted, malicious community image as a component of their application. Note that Docker Image Access Management is available only to customers of the company’s top Docker Business services offering.

Another important tool here is Docker Scout. It is built to help organizations better protect their software supply chain security when using container images, which consist of layers and software packages that may be susceptible to security vulnerabilities. Docker Scout helps with this issue by proactively analyzing container images and compiling a Software Bill of Materials (SBOM), which is a detailed inventory of code included in an application or container. That SBOM is then matched against a continuously updated vulnerability database to pinpoint and correct security weaknesses to make the code more secure.

More information and help about using Docker can be found in the Docker Trainings page, which offers training webcasts and other resources to assist developers and teams to negotiate their Docker landscapes and learn fresh skills to solve their technical inquiries. 

Examples of DevOps using Docker

Improving DevOps workflows is a major goal for many enterprises as they struggle to improve operations and developer productivity and to produce cleaner, more secure, and better code.

The Warehouse Group

At The Warehouse Group, New Zealand’s largest retail store chain with some 300 stores, Docker was introduced in 2016 to revamp its systems and processes after previous VMware deployments resulted in long setup times, inconsistent environments, and slow deployment cycles. 

“One of the key benefits we have seen from using Docker is that it enables a very flexible work environment,” said Matt Law, the chapter lead of DevOps for the company. “Developers can build and test applications locally on their own machines with consistency across environments, thanks to Docker’s containerization approach.”

Docker brought new autonomy to the company’s developers so they could test ideas and find new and better ways to solve bottlenecks, said Law. “That is a key philosophy that we have here — enabling developers to experiment with tooling to help them prove or disprove their philosophies or theories.”

Ataccama Corporation

Another Docker customer, Ataccama Corp., a Toronto-based data management software vendor, adopted Docker and DevOps practices when it moved to scale its business by moving from physical servers to cloud platforms like AWS and Azure to gain agility, scalability, and cost efficiencies using containerization. 

For Ataccama, Docker delivered rapid deployment, simplified application management, and seamless portability between environments, which brought accelerated feature development, increased efficiency and performance, valuable microservices capabilities, and required security and high availability. To boost the value of Docker for its developers and IT managers, Ataccama provided container and DevOps skills training and promoted collaboration to make Docker an integral tool and platform for the company and its operations.

“What makes Docker a class apart is its support for open standards like Open Container Initiative (OCI) and its amazing flexibility,” said Vladimir Mikhalev, senior DevOps engineer at Ataccama. “It goes far beyond just running containers. With Docker, we can build, share, and manage containerized apps seamlessly across infrastructure in a way that most tools can’t match.”

The most impactful feature of Docker is its ability to bundle an app, configuration, and dependencies into a single standardized unit, said Mikhalev. “This level of encapsulation has been a game-changer for eliminating environment inconsistencies.”

Wrapping up

Docker provides a transformative impact for enterprises that have adopted DevOps practices. The Docker platform enables developers to create, collaborate, test, monitor, ship, and run applications within lightweight containers, giving them the power to deliver better code more quickly. 

Docker simplifies and empowers development processes, enhancing productivity and improving the reliability of applications across different environments. 

Find the right Docker subscription to bolster your DevOps workflow. 

Learn more

Docker for Web Developers: Getting Started with the Basics

Docker is known worldwide as a popular application containerization platform. But it also has a lesser-known and intriguing alter ego. It’s a popular go-to platform among web developers for its speed, flexibility, broad user base, and collaborative capabilities. 

Docker has been growing as a modern solution that brings innovation to web development using containerization. With containers, developers and web development projects can become more efficient, save time, and drive fresh creativity. Web developers use Docker for development because it ensures consistency across different environments, eliminating the “it works on my machine” problem. Docker also simplifies dependency management, enhances resource efficiency, supports scalable microservices architectures, and allows for rapid deployment and rollback, making it an indispensable tool for modern web development projects.

In this post, we dive into the benefits of using Docker in businesses from small to large, and review Docker’s broad capabilities, strengths, and features for bolstering web development and developer productivity. 

2400x1260 docker for web developers

What is Docker?

Docker is secure, out-of-the-box containerization software offering developers and teams a robust, hybrid toolkit to develop, test, monitor, ship, deploy, and run enterprise and web applications. Containerization lets developers separate their applications from infrastructure so they can run them without worrying about what is installed on the host, giving development teams flexibility and collaborative advantages over virtual machines, while delivering better source code faster. 

The Docker suite enables developers to package and run their application code in lightweight, local, standardized containers that have everything needed to run the application — including an operating system and required services. Docker allows developers to run many containers simultaneously on a host, while also allowing the containers to be shared with others. By working within this collaborative workspace, productive and direct communications can thrive and development processes become easier, more accurate, and more secure. Many of the components in Docker are open source, including Docker Compose, BuildKit, the Docker command-line interface (Docker CLI), containerd, and more. 

As the #1 containerization software for developers and teams, Docker is well-suited for all flavors of development. Highlights include: 

  • Docker Hub: The world’s largest repository of container images, which helps developers and open source contributors find, use, and share their Docker-inspired container images.
  • Docker Compose: A tool for defining and running multi-container applications.
  • Docker Engine: An open source containerization technology for building and containerizing applications.
  • Docker Desktop: Includes the Docker Engine and other open source components; proprietary components; and features such as an intuitive GUI, synchronized file shares, access to cloud resources, debugging features, native host integration, governance, and security features that support Enhanced Container Isolation (ECI), air-gapped containers, and administrative settings management.
  • Docker Build Cloud: A Docker service that lets developers build their container images on a cloud infrastructure that ensures fast builds anywhere for all team members. 

What is a container?

Containers are lightweight, standalone, executable packages of software that include everything needed to run an application: code, runtime, libraries, environment variables, and configuration files. Containers are isolated from each other and can be connected to networks or storage and can be used to create new images based on their current states. 

Docker containers are faster and more efficient for software creation than virtualization, which uses a resource-heavy software abstraction layer on top of computer hardware. Additionally, Docker containers require fewer physical hardware resources than virtual machines and communicate with their host systems through well-defined channels.

Why use Docker for web applications?

Docker is a popular choice for developers building enterprise applications for various reasons, including consistent environments, efficient resource usage, speed, container isolation, scalability, flexibility, and portability. And, Docker is popular for web development for these same reasons. 

Consistent environments

Using Docker containers, web developers can build web applications that provide consistent environments from their development all the way through to production. By including all the components needed to run an application within an isolated container, Docker addresses those issues by allowing developers to produce and package their containers and then run them through various development, testing, and production environments to ensure their quality, security, and performance. This approach helps developers prevent the common and frustrating “but it works on my machine” conundrum, assuring that the code will run and perform well anywhere, from development through deployment.

Efficiency in using resources

With its lightweight architecture, Docker uses system resources more efficiently than virtual machines, allowing developers to run more applications on the same hardware. Docker containers allow multiple containers to run on a single host and gain resource efficiency due to the isolation and allocation features that containers incorporate. Additionally, containers require less memory and disk space to perform their tasks, saving on hardware costs and making resource management easier. Docker also saves development time by allowing container images to be reused as needed. 

Speed

Docker’s design and components also give developers significant speed advantages in setting up and tearing down container environments, allowing needed processes to be completed in seconds due to its lightweight and flexible application architecture. This allows developers to rapidly iterate their containerized applications, increasing their productivity for writing, building, testing, monitoring, and deploying their creations.  

Isolation

Docker’s application isolation capabilities provide huge benefits for developers, allowing them to write code and build their containers and applications simultaneously, with changes made in one not affecting the others. For developers, these capabilities allow them to find and isolate any bad code before using it elsewhere, improving security and manageability.

Scalability, flexibility, and portability

Docker’s flexible platform design also gives developers broad capabilities to easily scale applications up or down based on demand, while also allowing them to be deployed across different servers. These features give developers the ability to manage different workloads and system resources as needed. And, its portability features mean that developers can create their applications once and then use them in any environment, further ensuring their reliability and proper operation through the development cycle to production.

How web developers use Docker

There is a wide range of Docker use cases for today’s web developers, including its flexibility as a local development environment that can be quickly set up to match desired production environments; as an important partner for microservices architectures, where each service can be developed, tested, and deployed independently; or as an integral component in continuous integration and continuous deployment (CI/CD) pipelines for automated testing and deployment.

Other important Docker use cases include the availability of a strong and knowledgeable user community to help drive developer experiences and skills around containerization; its importance and suitability for vital cross-platform production and testing; and deep resources and availability for container images that are usable for a wide range of application needs. 

Get started with Docker for web development (in 6 steps)

So, you want to get a Docker container up and running quickly? Let’s dive in using the Docker Desktop GUI. In this example, we will use the Docker version for Microsoft Windows, but there are also Docker versions for use on Mac and many flavors of Linux

Step 1: Install Docker Desktop

Start by downloading the installer from the docs or from the release notes.

Double-click Docker Desktop for Windows Installer.exe to run the installer. By default, Docker Desktop is installed at C:\Program Files\Docker\Docker.

When prompted, be sure to choose the WSL 2 option instead of the Hyper-V option on the configuration page, depending on your choice of backend. If your system only supports one of the two options, you will not be able to select which backend to use.

Follow the instructions on the installation wizard to authorize the installer and proceed with the installation. When the installation is successful, select Close to complete the installation process.

Step 2: Create a Dockerfile

A Dockerfile is a text-based file that contains a running script of instructions giving full details on how a developer wants to build their Docker container image. A Dockerfile, which uses no file extension, is built by creating a file named Dockerfile in the getting-started-app directory, which is also where the package.json file is found. 

A Dockerfile contains details about the container’s operating system, file locations, environment, dependencies, configuration, and more. Check out the useful Docker best practices documentation for creating quality Dockerfiles. 

Here is a basic Dockerfile example for setting up an Apache web server

Create a Dockerfile in your project:

FROM httpd:2.4
COPY ./public-html/ /usr/local/apache2/htdocs/

Next, run the commands to build and run the Docker image:

$ docker build -t my-apache2
$ docker run -dit --name my-running-app -p 8080:80 my-apache2

Visit http://localhost:8080 to see it working.

Step 3: Build your Docker image

The Dockerfile that was just created allows us to start building our first Docker container image. The docker build command initiated in the previous step started the new Docker image using the Dockerfile and related “context,” which is the set of files located in the specified PATH or URL. The build process can refer to any of the files in the context. Docker images begin with a base image that must be downloaded from a repository to start a new image project.

Step 4: Run your Docker container

To run a new container, start with the docker run command, which runs a command in a new container. The command pulls an image if needed and then starts the container. By default, when you create or run a container using docker create or docker run, the container does not expose any of its ports to the outside world. To make a port available to services outside of Docker you must use the --publish or -p flag commands. This creates a firewall rule in the host, mapping a container port to a port on the Docker host to the outside world. 

Step 5: Access your web application

How to access a web application that is running inside a Docker container.

To access a web application running inside a Docker container, you need to publish the container’s port to the host. This can be done using the docker run command with the --publish or -p flag. The format of the --publish command is [host_port]:[container_port].

Here is an example of how to run a container and publish its port using the Docker CLI:

$ docker run -d -p 8080:80 docker/welcome-to-docker

In this command, the first 8080 refers to the host port. This is the port on your local machine that will be used to access the application running inside the container. The second 80 refers to the container port. This is the port that the application inside the container listens on for incoming connections. Hence, the command binds to port 8080 of the host to port 80 on the container system.

After running the container with the published port, you can access the web application by opening a web browser and visiting http://localhost:8080.

You can also use Docker Compose to run the container and publish its port. Here is an example of a compose.yaml file that does this:

services:
 app:
   image: docker/welcome-to-docker
   ports:
     - 8080:80

After creating this file, you can start the application with the docker compose up command. Then, you can access the web application at http://localhost:8080.

Step 6: Make changes and update

Updating a Docker application in a container requires several steps. With the command-line interface use the docker stop command to stop the container, then the existing container can be removed by using the docker rm (remove) command. Next, a new updated container can be started by using a new docker run command with the updated container. The old container must be stopped before replacing it because the old container is already using the host’s port 3000. Only one process on the machine — including containers — can listen to a specific port at a time. Only after the old container is stopped can it be removed and replaced with a new one. 

Conclusion

In this blog post, we learned about how Docker brings valuable benefits to web developers to speed up and improve their operations and creativity, and we touched on how web developers can get started with the platform on Day One, including basic instructions on setting up Docker quickly to start using it for web development.

Docker delivers streamlined workflows for web development due to its lightweight architecture and broad collaboration, application design, scalability, and other benefits. Docker expands the capabilities of web application developers, giving them flexible tools for everything from building better code to testing, monitoring, and deploying reliable code more quickly. 

Subscribe to our newsletter to stay up-to-date about Docker and its latest uses and innovations. 

Learn more

❌